A lowest order divergence-free finite element on rectangular grids

نویسندگان

  • Yunqing Huang
  • Shangyou Zhang
چکیده

It is shown that the conforming Q2,1;1,2-Q ′ 1 mixed element is stable, and provides optimal order of approximation for the Stokes equations on rectangular grids. Here Q2,1;1,2 = Q2,1 ×Q1,2 and Q2,1 denotes the space of continuous piecewise-polynomials of degree 2 or less in the x direction but of degree 1 in the y direction. Q′1 is the space of discontinuous bilinear polynomials, with spurious modes filtered. To be precise, Q′1 is the divergence of the discrete velocity space Q2,1;1,2. Therefore, the resulting finite element solution for the velocity is divergence-free pointwise, when solving the Stokes equations. This element is the lowest order one in a family of divergence-free element, similar to the families of the Bernardi-Raugel element and the Raviart-Thomas element.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence for Control-Volume Mixed Finite Element Methods on Rectangular Grids

We consider control-volume mixed finite element methods for the approximation of second-order elliptic problems on rectangular grids. These methods associate control volumes (covolumes) with the vector variable as well as the scalar, obtaining local algebraic representation of the vector equation (e.g., Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We establish O(h2)...

متن کامل

Rehabilitation of the Lowest-Order Raviart-Thomas Element on Quadrilateral Grids

A recent study [4] reveals that convergence of finite element methods usingH(div ,Ω)compatible finite element spaces deteriorates on non-affine quadrilateral grids. This phenomena is particularly troublesome for the lowest-order Raviart-Thomas elements, because it implies loss of convergence in some norms for finite element solutions of mixed and least-squares methods. In this paper we propose ...

متن کامل

Bases for C0-P1 divergence-free elements and for C1-P2 finite elements on union jack grids

It is a challenge to find point wise (including inter-element boundary) divergence-free finite element bases. By identifying functions in the kernel of the divergence operator, we discover a local basis for the full divergence-free space of the C0-P1 finite element, on the union jack grid. The optimal order of approximation is shown for the P1 divergence-free finite elements on union jack grids...

متن کامل

Divergence-free finite elements on tetrahedral grids for k≥6

It was shown two decades ago that the Pk-Pk−1 mixed element on triangular grids, approximating the velocity by the continuous Pk piecewise polynomials and the pressure by the discontinuous Pk−1 piecewise polynomials, is stable for all k ≥ 4, provided the grids are free of a nearly-singular vertex. The problem with the method in 3D was posted then and remains open. The problem is solved partiall...

متن کامل

Mixed Finite Element Methods

A new mixed nite element method on totally distorted rectangular meshes is introduced with optimal error estimates for both pressure and velocity. This new mixed discretization ts the geometric shapes of the discontinuity of the rough coeecients and domain boundaries well. This new mixed method also enables us to derive the optimal error estimates and existence and uniqueness of Thomas's mixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009